Counting on Chebyshev Polynomials
نویسندگان
چکیده
منابع مشابه
On Counting Polynomials of Some Nanostructures
The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.
متن کاملOn integer Chebyshev polynomials
We are concerned with the problem of minimizing the supremum norm on [0, 1] of a nonzero polynomial of degree at most n with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem due to P. Borwein and T. Erdélyi and impr...
متن کاملOn Chebyshev Polynomials of Matrices
The mth Chebyshev polynomial of a square matrix A is the monic polynomial that minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well known propertie...
متن کاملon counting polynomials of some nanostructures
the omega polynomial(x) was recently proposed by diudea, based on the length of stripsin given graph g. the sadhana polynomial has been defined to evaluate the sadhana index ofa molecular graph. the pi polynomial is another molecular descriptor. in this paper wecompute these three polynomials for some infinite classes of nanostructures.
متن کاملSymmetrized Chebyshev Polynomials
We define a class of multivariate Laurent polynomials closely related to Chebyshev polynomials and prove the simple but somewhat surprising (in view of the fact that the signs of the coefficients of the Chebyshev polynomials themselves alternate) result that their coefficients are non-negative. As a corollary we find that Tn(c cos θ) and Un(c cos θ) are positive definite functions. We further s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics Magazine
سال: 2009
ISSN: 0025-570X,1930-0980
DOI: 10.4169/193009809x468931